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The r a t e  of growth of a bubble is de te rmined  f rom the s e l f - s i m i l a r  solution of the h e a t - t r a n s f e r  
equation. A compar i son  is made with the L a b u n t s o v - S c r i v e n  approximat ion .  

In o rde r  to calcula te  the t r ans i en t  phase  of the d e c o m p r e s s i v e  flashing of l a rge  m a s s e s  of a superhea ted  
liquid it is n e c e s s a r y  to know the laws of vapor -bubb le  dynamics .  In genera l  it is r equ i red  to solve the h y d ro -  
dynamical  and the rmophys ica l  p r o b l e m s  s imul taneous ly .  Quite a la rge  number  of appl icat ions  can be desc r ibed  
within the scope of the t h e r m a l  approximat ion  [1-3]. 

In the t he rma l  approximat ion  it is a s s u m e d  that  the p r o c e s s  of bubble growth is sustained by heat input 
spent in vapor iza t ion .  We neglect  iner t ia l  and v i scous  fo r ce s .  Even these s impl i f ica t ions  fail  to provide su i t -  
able analyt ical  exp re s s ions  for the bubble r ad ius  in a va r iab le  p r e s s u r e  field, although this type of p rob lem is 
comple te ly  solvable  for numer ica l  ca lcula t ions .  Cons ider ing  the fact  that the the rmophys ica l  p r o p e r t i e s  of a 
superhea ted  liquid have not been adequately studied and, accordingly ,  the degree  of uncer ta in ty  of the r e s u l t s  of 
calculat ions of bubble growth r a t e s  is s t i l l  apprec iab le ,  the inappropr i a t eness  of a p r e c i s e  machine  ca l cu la -  
tion of the bubble dynamics  becomes  obvious.  It is difficult to obtain approx imate  analyt ical  e s t i m a t e s  within 
the f r a m e w o r k  of the conventional approach  based  on the solution of the t r ans ien t  t h e r m a l  p rob lem with initial 
condit ions.  Also,  the exist ing solutions a r e  unsa t i s f ac to ry  at supe rhea t s  c o m m e n s u r a t e  with the quantity L / c ' .  
These  inadequacies  a r e  surmounted  in the s e l f - s i m i l a r  solution (SSS) p roposed  below. 

We neglect  heat  t r a n s f e r  between the vapor  and liquid; then the hea t -ba lance  equation for a single bubble 
of r ad ius  R takes  the fo rm 

dt L o 

Here the temperature 0 is measured relative to the temperature at infinity. To determine the temperature 
gradient on the bubble surface (d0/dx) 0 -= (d0/dx)(x = 0) in an incompressible liquid it is necessary to solve the 
equation 
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O(x=oo ,  t ) = O ( x > O ,  t = O ) = O ,  O(x=O, t > O ) = O o .  

(2) 

This equation is wr i t ten  in a Lagrang ian  coordinate  s y s t e m  "affixed" to the bubble su r face .  The coordinate  x 
is reckoned  f rom the bubble su r f ace .  The f i r s t  t e r m  on the r igh t -hand  side is the nonlinear par t  of the spher ica l  
Laplacian,  the second t e r m  is a s soc ia t ed  with convect ive flow toward the bubble su r face  in the moving coordinate  
sys t em,  and the th i rd  t e r m  r e f e r s  to the liquid flow in vapor iza t ion .  

For  a constant su r face  t e m p e r a t u r e  00 and dR/d t  -> 0 Eq. (2) has the s e l f - s i m i l a r  solution 
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Making use  of the condition 0(x = 0% t) = 0, we wri te  the t e m p e r a t u r e  of the bubble sur face  in t e r m s  of the 
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dimensionless groups T = -- c'OolL, G = Rc'(OO/Ox)o/L, 7 = d(R212a)/dt ~ 0 in the form 
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We rewri te  Eq. (1): 

R 2 d 
- -  - -  I n  p" - -  Gp'fp". ( 5 )  

7 -F 3a dt 

The absolute value of the surface t empera tu re  is taken equal to the saturation tempera ture  and depends 
on the external p re s su re .  The SSS therefore  does not exist in a var iable  p r e s s u r e  field, but expression (4) is 
still reasonably  accura te  in the given situation. In support of this fact we note that Eq. (2) with the t e r m  
(dO/dt) /a  discarded yields the express ion 
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where it is not required  that 00 be constant.  

It is seen at once that express ions  (4) and (6) coincide for Y << 1 as well as for G >> 1. In the intermediate  
range of values of the p a r a m e t e r s  the quantity G calculated according to (4) and (6) does not differ by more  than 
50%. Consequently, the p roces se s  associa ted with redis t r ibut ion of the tempera ture  field with the variat ion of 
00 are  usually negligible in the approximate calculation G. 

The sys tem of  equations (4) and (5) completely de termines  the adopted bubble dynamics model. Here the 
dimensionless  values of the t empera tu re  gradient G and the ra te  of change of the bubble surface a rea  are  
unknown. The density of the vapor p ' ,  the density of the liquid p ' ,  and the relat ive heat s tored by the liquid 
are  considered to be given functions of the p r e s su re .  The differential t empera tu re  is equal to the saturated 
vapor tempera ture  relat ive to the t empera tu re  at infinity, at the instantaneous p re s su re .  An analogous model 
for a constant vapor density has been investigated in [1], but the approximation used there  for the heat balance 
of the bubble is not valid in the case of high superheats  of the liquid. 

The integral  (4) has been analyzed in [1], in which the authors have obtained a formal  se r ies  expansion in 
powers of 4-7 and use explicitly only the f i rs t  t e rm of the expansion, also writing its asymptotic  representa t ion  
up to 1/7.  These resu l t s  can be improved.  If we replace  the f i rs t  t e r m  in the argument  of the exponential by 
37y2/2, we obtain a fair ly strong and useful upper bound on the value of T /G:  

- (7) 

Here ~(x) is the probabili ty integral  [4]. The upper bound r ep re sen t s  the exact  value of the integral (4) for 
7 >> 1 or for 7 << 1. For Eq. (4) we can obtain the asymptot ic  representa t ion  
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Moreover ,  for 37/2 >> 1 we obtain f rom inequality (7) 

G2 ,10, 

In express ions  (8)-(10) the symbol O(x v) signifies that t e r m s  of order  x p and higher are  discarded.  

We now consider the case of bubble growth for a constant external  p re s su re ,  so that Eq. (5) is simplified: 

G = P"7/P'. (11) 
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Substituting (11) into (4) or  into (7)-(10),  we obtain equations in y, the solutions of which yield the r a t e  of growth 
of the bubble su r f ace .  In p a r t i c u l a r ,  

vO--  ?<< 1)~ 3 ( ~ , ' , ) 2 [ 1 + 2 ~ , ' ( 1 - - T )  ( ~ - - 1 ) +  0 ((1 - -  ~-)z)] , (12) 

~' 6 p'T 1+o(~-~)+o p" \ 

We compare  these  r e s u l t s  with the wel l -known L a b u n t s o v - S c r i v e n  approximat ion  [2]. 

(13) 

(14) 
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It  coincides with the solution in [1] for  l a rge  and smal l  Jakob number s  p,~r/p,. The approximat ion  (15) has  the 
drawback that  it does not d iverge  as  T --- 1. 

It is r ead i ly  pe rce ived  that  (13) coincides  with the cor responding  asympto t ic  ve r s i on  (15) up to the second 
t e r m  in the b racke t s  of (13). Expres s ion  (14) coincides with (15) for p 'T /p"  >> i only if in the la t ter  we make  
the subst i tvt ion 

T-+ 77(1 - -  2 ? / ~ )  (16) 

the approximat ion  (15) t he r e  is no analog to the asympto t i c  r ep re sen t a t i on  (12). The d ivergence  in (12) as 
T -* 1 is induced by the fac t  that  the heat  s tored  by the liquid, 00c', is sufficient for its comple te  vapor iza t ion .  
What this m e a n s  in p r ac t i ca l  t e r m s  is that  the Rayleigh phase  of the bubble-growth p r o c e s s  l a s t s  indefinitely.  
For high supe rhea t s  of the liquid the approximat ion  (15) d e c r e a s e s  substant ia l ly  the bubble growth r a t e .  N u m e r -  
ical ca lcula t ions  have shown that  in the range  of p a r a m e t e r s  2T - -  ~ even the upper  bound (7) is more  
p r e c i s e  than (15). 

The approximat ion  (15)can  be adjusted for high superhea ts  by rep lac ing  the heat of vapor iza t ion  L with 
an effect ive value.  For  1 -- T << 1 and p"/p'  << 1 we have 

L e f = L ~ ( 1  - -  T). (1.7) 

At ~he a t ta inable  superhea t  for a num ber  of organic  liquids at a t m o s p h e r i c  p r e s s u r e  the d imens ion less  group 
B 1. We note that  ca lcula t ions  accord ing  to the value of the specif ic  heat  along the sa tura t ion  line give too 

low a value for this quantity,  because  the speci f ic  heat  of the liquid i n c r e a s e s  with the superhea t .  For  p rac t i ca l  
calcula t ions  we can use  the speci f ic  heat ave raged  over  ~he t e m p e r a t u r e  along the sa tura t ion  l ine.  The r e -  
p lacement  of  L by Le f  is  a consequence of including the third t e r m  on the r igh t -hand  side of Eq. (2). For  a 
b roade r  range  of va lues  of p'/p'  and T it is  m o r e  p rac t i ca l  to r e p l a c e  L in the approximat ion  (15) by 

L e f =  (1 - -  T) L. (18) 

This substi tut ion,  however ,  g ives  an i n c o r r e c t  a sympto t i c  behavior  as  ~ ~ 1. 

We consider  the growth of a bubble for a va r i ab l e  externa l  p r e s s u r e .  We a s s u m e  that  the p r e s s u r e  in the 
superhea ted  liquid i n c r e a s e s  with t ime  in such a way as to mainta in  a constant  bubble rad ius ,  i .e. ,  y = 0, so that  
f rom (4) and (5) we deduce the re la t ion  

_ _  pF R ~ d l n p " +  l n ( 1 - - 7 ' ) = 0 o  (19) 
3a dt 7 

We denote by R* the value of the r ad ius  sa t i s fy ing this equation. Bubbles with R > R* will be c o m p r e s s e d  
(y < 0), andthose  with R < R* will continue to grow (y > 0). Consequently,  i f  the p r e s s u r e  on the liquid contain-  
ing the bubble is  modula ted  in such a way that  (dp"/dt)/ln(1 - ~) = const < 0, the bubb le - s ize  spec t rum will 
na r row toward  R = R*. 
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Regarding the vapor  as  an ideal gas,  f rom (19) we obtain 

(20) 

where Tp -- pWl(dpN/dt) is  the c h a r a c t e r i s t i c  t ime  sca le  of the p r e s s u r e  r i s e .  For  wa te r  superhea ted  to the 
t emperEture  of intense fluctuation nucleation at a tmosphe r i c  p r e s s u r e  in p r o c e s s e s  with ~'p = 10 -4 sec we have 
R* ~ 0.2 ram. 

For  l a rge  bubbles R >> R* we infer  f rom (5) the m a s s  conserva t ion  condition R3(t)p(p(t)) = const .  If  R << 
R*, then Eq. (11) r e m a i n s  val id.  Using any of the a sympto t i c  exp re s s ions  (12)-(14) or approximat ion  (15) with 
L rep laced  by Lef  therein ,  We can wri te  R2(t) as a functional of T and p"/p ' .  In p a r t i c u l a r ,  for 1 - ~ << 1 we 
have 

t 

RZ(t) ~ 6a j" (9'/9")~1__T d'~. (21) 

o 

Here  the quantit ies in the integrand depend on the p r e s s u r e ,  which in turn  is a function of the running t ime ~-. 
The functional (21) is suitable for calcula t ions  in the case  of an a r b i t r a r y  but slow var ia t ion  of the p r e s s u r e ,  
in which case  the second t e r m  in (5) can be neglected.  

The se lec ted  approximat ion affords  the theore t i ca l  poss ib i l i ty  of  calculat ing analyt ical ly  the explosive  
flashing of l a rge  m a s s e s  of l iquids,  when the re  is  a mutual  influence between the p r e s s u r e  field and the v a p o r i -  
zation kinet ics .  It is found in this case  that  with an i n c r e a s e  in the superhea t  the Rayleigh phase  of the growth 
of a vapor  bubble l a s t s  longer  than predic ted  by p rev ious  theo r i e s .  

N O T A T I O N  

R, bubble radius;  0, t e m p e r a t u r e  m e a s u r e d  r e l a t i ve  to the t e m p e r a t u r e  far  f r o m  the bubble; x, dis tance 
f rom the bubble sur face ;  X, a, t he rma l  conductivity and t h e r m a l  diffusivity of the liquid; p', p",  densi t ies  of the 
liquid and the vapor;  c ' ,  specif ic  heat of the liquid; L, heat  of vapor iza t ion;  d imens ion less  groups:  T = - c ' 0 ( x  = 
0) /L,  G = Rc ' (80/Sx) /L(x  = 0), y = d(R2/2a)/dt; p(t), p r e s s u r e ;  t, t ime .  
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